卒業論文概要書

2021年 1月 29日提出

所属学科	物理学科	氏名	横川 広歩	学番	籍号	1Y17A044-8
研究題目	中性子イメージングカメラによる広がった線源の撮像および検証			指教	導員	片岡 淳教授

【研究目的・背景】

陽子線治療は高い線量集中性により、最新のがん 治療として注目を集めている。その一方で、照射時 に発生している二次放射線(ガンマ線・高速中性子) の影響は未だ十分に検証されておらず、二次放射線 による被ばく量を調査する必要がある。そこで我々 は二次中性子の可視化に向け、中性子散乱カメラの 開発を進めた。先行研究では点線源の撮像や線量分 布の定量評価に成功している。

本研究では、より正確な中性子発生分布を求める ため、画像再構成方法とカメラの構成を検討した。 検討の一つ目に、従来行われていた天球面射影から 平面射影に変更することで、近距離の線源分布を確 認した。二つ目として、視野平面上の各位置での検 出効率を反映させた感度マップによる画像補正を 導入した。三つ目にカメラの構成を検討した。

【広がった線源の撮像】

本研究では、中性子カメラにより線状の 252Cf 線 源を撮像した。線状線源は点線源を可動式ステージ で移動させて再現した。図 1 に撮像実験の配置(左) と再構成画像(中)・線源位置での断面図(右)を示す。

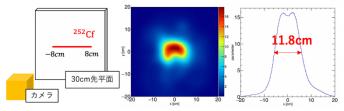


図1線状線源の撮影実験

図 1(中)に示すように線状線源の撮影に成功した。 しかしながら、断面図での半値幅が 11.8cm であ り、実際の線源長に比べ短く見積もられた。これ は視野端付近での解像度悪化が原因だと考えられ る。実際、図2に示すように視野端では点線源が 一定方向に広がった。解像度が悪い場合には画像 中のピクセル値が低下するため、線状線源の両端 の再現ができていなかったと考えられる。解像度

悪化の原因とし て、画像再構成 に用いるイベン トパターンの少 なさが挙げられ る。

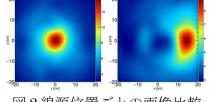


図2線源位置ごとの画像比較

【カメラ構成の検討(シミュレーション)】

描画するイベントのバリエーションを増やすた め、中性子カメラの後層ユニットの間隔を現状 (5mm)より広げて画像を比較した。図3では後層の ユニット間隔を 5, 10, 15mm に変更して、画像を比 較した。

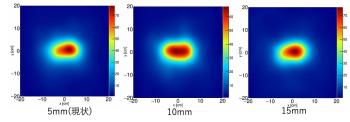


図3線状線源の画像比較

図3では、後層のユニット間隔が 10mm のとき改 善が見られた。断面図での半値幅は各 12.2, 13.5, 12.5cm であった。そこで我々は、視野中心を通る 水平方向に点線源を置いてデータを取得し、検証を 行った。各線源位置での解像度(ピーク半値以上の ピクセルの面積)と強度(イメージ平面でのピクセル 値の積分値)の比較を図4に示す。

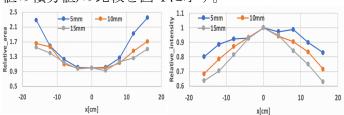


図4解像度(左)強度(右)の相対値の比較

ユニット間隔を広げる事で、視野端での解像度が改 善した。一方、強度は低下したため、解像度と強度 がトレードオフの関係になっている事がわかった。 図3,4より、本研究において後層のユニット間隔の 最適値は 10mm と結論づけた。

【まとめ・今後の展望】

本研究では、広がった線源の撮像により平面再構 成の検証を行った。また、線状線源を撮像し、評価 する事でカメラ構成の改善を行った。

今後の展望として、カメラ構成の検討に加え、画 像の再構成法を工夫することで、より再現度の高い 中性子イメージングを実現していきたい。